
NYC_NY8

NYC for NY8 Series

C Compiler

Version 2.0
Aug. 23, 2023

NYQUEST TECHNOLOGY CO., Ltd. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and
reliable. However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications

before placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition,

NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product
may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

U
ser M

anual

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 2

Table of Contents

1 Introduction .. 4

1.1 Outline of the manual ... 4

1.2 System Requirements .. 4

1.3 The Installation of NYC_NY8 .. 4

2 Use NYC_NY8 .. 5

2.1 Use NYC_NY8 through NYIDE... 5
2.1.1 Create New Project ... 5
2.1.2 Build .. 5

3 Syntax and Usage .. 6

3.1 Standard C Syntax ... 6
3.1.1 Comment ... 6
3.1.2 Data Type .. 6

3.2 Extended Syntax .. 7
3.2.1 Reserved Word ... 7
3.2.2 Interrupt ... 7
3.2.3 Register Address Definition ... 8
3.2.4 Register Bits Definition .. 8
3.2.5 Inline Assembly ... 10
3.2.6 Inline Assembly Block ... 10
3.2.7 Pointer Property .. 10

3.3 System Header File ...11
3.3.1 Special Command Macro .. 11
3.3.2 System Register Definition .. 12
3.3.3 ROM Data Access ... 12
3.3.4 EEPROM Data Access ... 13
3.3.5 Built-in Function Multi-16b .. 14
3.3.6 Built-in Function clear_ram ... 14

3.4 Option .. 15

3.5 Development Process .. 16

3.6 Advanced Usage .. 17
3.6.1 Specify the Address of Variables .. 17
3.6.2 Specify the Address of Function ... 18

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 3

3.6.3 Mixed Usage of C and Assembly .. 19

3.7 Suggestion ... 23

3.8 FAQ .. 24

4 Revision History .. 29

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 4

1 Introduction
NYC_NY8 is the C Compiler for Nyquest 8-bit MCU “NY8 series”. NYC_NY8 is called by the upper level

development tools NYIDE to compile C program into assembly, NYASM Assembler will then assembly and link

the object files to generate.bin file, which is used to download to the board or program to OTP IC.

1.1 Outline of the manual

1. Introduction

This chapter explains the role NYC_NY8 plays and the basic requirements for the installation of

NYC_NY8.

2. Use NYC_NY8

How to use NYC_NY8 through NYIDE.

3. Syntax and usage

Introduce the syntax and usage of NYC_NY8.

1.2 System Requirements

 A PC equipped with Pentium 1.3GHz or higher CPU, Windows 7/ 8/ 10/ 11

 At least 2G SDRAM.

 At least 2G free space on the hard disk.

1.3 The Installation of NYC_NY8

Please contact Nyquest Technology to obtain the latest installation program. Double click the execution icon

to activate installation wizard, and following the instructions to complete the installation process.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 5

2 Use NYC_NY8
After finishing a program in NY8 software development tool - NYIDE, pressing Build in the NYIDE menu will

automatically search for installed NYC_NY8 to compile and link. The procedures for using NYC_NY8 in NYIDE

are described below.

2.1 Use NYC_NY8 through NYIDE

NYIDE is an integrated tool provided by Nyquest for developing application of NY4 / 5 / 6 / 7 / 8 / 9T / 9UB /

NX1 series microcontroller. The main purpose is to provide a platform for programming with Assembly

language and C language, as well as build and strong debug functions. When using NYIDE to develop NY8

projects, NYIDE will automatically search for installed NYC_NY8 toolchain on computer for building and

debugging. The following is an introduction of using NYIDE to develop NY8 projects. More detailed

operations, please refer to the NYIDE user manual.

2.1.1 Create New Project

Open NYIDE, and select New Project. In the Project New window, choose C on the Categories and

select NY8. Specify project name and type, then press “Create”, and NYIDE will automatically generate

the necessary files.

2.1.2 Build

When user selects the Build / Build Solution menu (or press the shortcut

key F7) on the NYIDE main screen, NYC_NY8 will be called to perform

the build action. If it is successfully built, the .bin file will be generated in

the project directory for downloading or programming.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 6

3 Syntax and Usage
NYC_NY8 supports standard ANSI C89 syntax, and adds some specific syntax for NY8 series IC.

3.1 Standard C Syntax

NYC_NY8 supports standard ANSI C89 syntax. For more detailed regarding language definitions, please

refer to: Standard ISO/IEC 9899 (http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899).

3.1.1 Comment

There are 2 forms of Comment. The single line comment begins with double slash, and the multi-line

comment begins with /* and ends with */.

Example:

// single line comment

/*

Multi line comment

*/

3.1.2 Data Type

The following table is the basic data types and the data range of NYC_NY8. Using stdint type must

include the stdint.h file first.

Type stdint Length Range

char uint8_t 1 byte 0 ~ 255

signed char int8_t 1 byte -128 ~ 127

short int16_t 2 bytes -32768 ~ 32767

unsigned short uint16_t 2 bytes 0 ~ 65535 (0xFFFF)

int int16_t 2 bytes -32768 ~ 32767

unsigned int uint16_t 2 bytes 0 ~ 65535 (0xFFFF)

long int32_t 4 bytes -2147483648 ~ 2147483647

unsigned long uint32_t 4 bytes 0 ~ 4294967295 (0xFFFFFFFF)

http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 7

3.2 Extended Syntax

3.2.1 Reserved Word

All reserved words are listed below, and the user-defined symbols cannot be the same as the reserved

words.

auto do goto sizeof void

break double if static volatile

case else int struct while

char enum long switch inline

const extern return typedef restrict

continue float short union

default for signed unsigned

__addressmod __far __pdata __sram _Static_assert

__asm__ __fixed16x16 __preserves_regs __t0mdpage register

__at __flash __reentrant __trap

__banked __fpage __sbit __typeof

__bit __idata __sfr __using

__builtin_offsetof __interrupt __sfr16 __wparam

__code __naked __sfr32 __xdata

__critical __near __shadowregs __z88dk_callee

__data __nonbanked __smallc __z88dk_fastcall

__eeprom __overlay __spage _Alignas

3.2.2 Interrupt

Interrupt service subprogram is divided into hardware interrupts and software interrupts in NY8 series,

the addresses are 0x08 and 0x01 respectively. In C, an __interrupt attributes must be appended to the

function definition for declaring function as interrupt service routine. __interrupt(0) represents the

hardware interrupt service routine, and __interrupt(1) represents the software interrupt service routine.

The compiler will then arrange this function at the specified address, for example, the hardware

interrupt is at address 0x08. The compiler will automatically keep the current status before entering the

interrupt service routine, such as register ACC, register Status, register FSR, and automatically restores

the status when it leaves the interrupt service routine.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 8

Ex.

void isr_hw(void) __interrupt(0)

{

 if(INTFbits.T0IF)

 {

 INTFbits.T0IF = 0;

 TMR0 = 0xc0;

 PORTB ^= 0x01;

 }

}

//! software interrupt service routine

void isr_sw(void) __interrupt(1)

{

 // do something

}

3.2.3 Register Address Definition

All registers of NY8 IC have been defined in the header files located in “include” directory of the

installation folder, header filename is IC part no. It is recommended to use the header file directly, which

will save the efforts to define special registers.

3.2.4 Register Bits Definition

The __sbit keyword can define one of the bits in the 8-bit register as a new variable. The syntax is as

follows.

__sbit <name> = <variable_8bit> : <bit>;

The __sbit can only be linked to one bit of the existing 8-bit variables, and it cannot occupy the new

memory space independently. The following example demonstrates how to use the sbit to define two

flags. The flag1 is linked to the 0th bit of myvar, the flag2 is linked to the 3rd bit of myvar (the optional

bits are 0 to 7). The variable defined by sbit is a single bit, so the value can only be 0 or 1, and the result

of read is also 0 or 1.

#include <stdint.h>

uint8_t myvar;

__sbit flag1 = myvar:0;

__sbit flag2 = myvar:3;

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 9

void main(void)

{

 flag2 = 1; // equals to myvar |= 0x08

 if (flag1)

 PORTB = 0;

 else

 PORTB = 0xff;

}

The NYC_NY8 supports sbit starting with version 1.10. With older versions, user may create a struct

defined by an independent bit to achieve sbit function, as shown in the following example.

typedef unsigned char uint8_t;

typedef union flag_t

{

 uint8_t all8bit;

 struct

 {

 unsigned FG0 : 1;

 unsigned FG1 : 1;

 unsigned FG2 : 1;

 unsigned FG3 : 1;

 unsigned FG4 : 1;

 unsigned FG5 : 1;

 unsigned FG6 : 1;

 unsigned FG7 : 1;

 };

} flag_t;

flag_t my_flag;

void main(void)

{

 // set value for 8bit register

 my_flag.all8bit = 0x12;

 // set value for 1bit flag

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 10

 my_flag.FG0 = 0;

}

3.2.5 Inline Assembly

The assembly can be embedded in the C language, use the keyword "__asm__" to insert any

assembly programs. The following program shows the example of the embedded assembly, the

compiler stores the current address in the STK00 and ACC registers and jumps directly to another

function.

void switch_task_2(int current_pc);

void inline switch_task(void)

{

 __asm__("movia $+4");

 __asm__("movar STK00");

 __asm__("movia ($+2)>>8");

 __asm__("lgoto _switch_task_2");

}

3.2.6 Inline Assembly Block

The previous example program could be rewritten as assembly program block by using

“ __asm……__endasm” to completely wrap the assembly block. Please notice there is a semicolon at

the end of “ __endasm;”.

void inline switch_task(void)

{

 __asm

 movia $+4

 movar STK00

 movia ($+2)>>8

 lgoto _switch_task_2

 __endasm;

}

3.2.7 Pointer Property

“__code” and “__data” are used to specify the pointer to be stored in ROM or RAM. The general pointer

occupies 3 bytes, of which 2 bytes store address, 1 byte store pointer type to distinguish the pointer

points to ROM or RAM. When the compiler have enough information to judge the pointer type, the 1

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 11

byte of pointer type can be omitted. For example, the array data in the following program is stored in

ROM, and ptr1 and ptr2 are pointing to data. However, ptr1 has __code attribute, the compiler can

determine that the pointer will only point to the ROM, then the compiler will actually generated machine

code of ptr1 occupying 2 bytes, and ptr2 occupying 3 bytes. When using pointers, if user know that the

pointer will only point to the ROM or RAM, please specify the __code or __data attribute in advance to

save RAM usage, which also produces more streamlined instructions.

const static char data[] = { 0, 1, 2, 3 };

__code const char *ptr1;

const char *ptr2;

void main(void)

{

 unsigned char i;

 ptr1 = data;

 ptr2 = data;

 for(i=0; i<(unsigned char)sizeof(data)/sizeof(data[0]); i++)

 {

 PORTB = *ptr1;

 PORTB = *ptr2;

 ptr1++;

 ptr2++;

 }

}

3.3 System Header File

The “include” folder in the NYC_NY8 installation directory has C header files for all NY8 IC. This section

describes the contents of these header files and how to use them.

3.3.1 Special Command Macro

The ny8common.h file defines commonly used assembly macros that control IC behavior in a

lower-level, and the user can call these macros at the proper time.

Macro Description
ENI() Enable interrupt.
DISI() Disable interrupt.
INT() Trigger software interrupt.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 12

CLRWDT() Clear the watch dog timer.
SLEEP() Sleep.
NOP() Empty command.

3.3.2 System Register Definition

The ny8.h will automatically include the dedicated header file according to the selected IC, all special

registers supported by the IC are defined in the header file with the same name as IC. The special

registers have four types: General page declared with attribute __sfr, F-page declared with attribute

__fpage, S-page declared with attribute __spage, and T0MD declared with attribute __t0md.

At the C language level, these registers do not have any differences. But the users still have to know

that the actually assembly codes for accessing these registers are not the same. Only the general page

register can be accessed directly, such as directly setting the value of a bit or directly exclusive or (XOR)

a register. In addition to the general page register, other special registers cannot be directly accessed.

The underlying assembly must move the value of these special register to the ACC register firstly, and

then continue the next operation.

For the special register of general page, it’s suggested to set individually bit to 1 or 0. But for other

special registers, it's recommended to directly set the complete 8-bit value. Following such rules can get

more compact machine codes.

It is recommended to use the ny8.h file instead of using the IC dedicated header file directly, which can
reduce the inconsistency between the header file and the function library by replacing the IC. The ny8.h
file is provided from NYC_NY8 1.10. If using the previous version of NYC_NY8, users must to replace
the included header file after switching the IC.

3.3.3 ROM Data Access

The ny8_romaccess.h file defines the function to read ROM data.

Each word in NY8 ROM is 14-bit. The general C language pointer can only read the low 8-bit in 14-bit,
using the defined read_14bit_rom function in ny8_romaccess.h can read the complete 14-bits.

Ex.

#include <ny8_romaccess.h>

……

__code char *rom_ptr; //!< ROM pointer

int checksum_val; //!< checksum value calculated by program.

checksum_val = 0;

for(rom_ptr=0; rom_ptr<(__code char*)&_checksum; ++rom_ptr)

 checksum_val += read_14bit_rom(rom_ptr);

For more examples, please refer to the sample program “Checksum” list in NYIDE.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 13

3.3.4 EEPROM Data Access

Some ICs have built-in EEPROM that must use special commands to access. NYC_NY8 provides the C

functions for accessing EEPROM.

The ny8_eeprom.h defines the functions to access EEPROM data. When using IC with the built-in

EEPROM, ny8_eeprom.h will be automatically added to the project. The functions provided are as

follows.

Function Description

eeprom_read Read a byte at the specified address.

eeprom_write Write a byte at the specified address.

eeprom_protect_lock Lock/unlock EEPROM write protection.

eeprom_protect_unlock Lock/unlock EEPROM write protection.

 unsigned char eeprom_read (unsigned char address)

The parameter specifies the address of EEPROM to read from.

The return value is one byte data read from the specified address.

 void eeprom_write (unsigned char address, unsigned char value)

The parameter specifies the address of EEPROM to write to.

The parameter value accepts one byte data, and it will be written to the specified address.

User must unlock the EEPROM write protection before using eeprom_write.

 void eeprom_protect_lock (void)
The ways of lock/unlock EEPROM write protection are different according to ‘EEPROM Write
Mode’ option in config block. In ‘One Byte’ write mode, the EEPROM write protection will be
unlocked while calling this funcion. After the eeprom_write finishing the write, the hardware will
lock the write protection automatically. User must unlock the write protection everytime before
writing in ‘One Byte’ write mode. In ‘Continuous Write’ mode, the EEPROM write protection will be
unlock at the first call, user can then use eeprom_write function to write to EEPROM for multiple
times. The eeprom_protect_lock will re-lock the write protection at the second call. User must call
the function lock after all the writes are completed.

 void eeprom_protect_unlock (void)
The void eeprom_protect_lock and the void eeprom_protect_unlock is the same program with
different names. eeprom_protect_unlock and eeprom_protect_lock use the same program space
without extra ROM consumption.

Ex.

#include <ny8.h>

#include <ny8_eeprom.h>

void main(void) {

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 14

 eeprom_protect_lock ();

 eeprom_write (0, 2);

 PORTB = eeprom_read (0);

}

For more examples, please refer to the sample programs “ eeprom-write-one-byte” and

“ eeprom-continuous-write” listed in NYIDE.

3.3.5 Built-in Function Multi-16b

The input and output of C language multiplication operation must be the same data type. Multiplying two

16-bit integers produces only a 16-bit result. If a 32-bit result is required, the input data must be

converted to 32-bit (long). The built-in function multi_16b is a special multiplication function. The input is

two positive 16-bit integers and the output is a positive 32-bit integer. The resource consumption of

ROM and RAM is between multiplication of 16-bit and 32-bit. Please note that the multi_16b function

cannot calculate negative numbers. NYC_NY8 1.43 version supports this function.

Ex.

#include <ny8.h>

unsigned int a = 0x1234;

unsigned int b = 0x5678;

unsigned long c;

void main(void) {

 c = multi_16b(a, b); // c == 0x6260060

}

3.3.6 Built-in Function clear_ram

Clear all RAM of IC to 0, not only the variables declared in C language, including unused RAM from

user programs, and temporary variables generated by Compiler will be set to 0 as well. The Special

Function Register (SFR) will not be changed. The actual program logic is the same as NYIDE project

setting check Clear RAM to zero. The difference between the two is the execution timing. Clear RAM to

zero will only be executed once before entering the main function, while clear_ram can be executed

manually at any time. This function will automatically link the correct program in different IC to ensure

that the set RAM range meets the IC specification. NYC_NY8 1.60 and newer versions support this

function.

Function prototype claims:

// ny8common.h

extern void clear_ram(void);

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 15

3.4 Option

Using NYIDE to develop a C language project, there are several project build options can be set. These

options can control the compiler, assembler and linker behavior. User can select the Project / Project

Settings on Menu to open the setting interface.

 Use RAM Bank0 only: Selecting this option can only uses Bank0 memory, and the generating Code size

is smaller. Some IC body only has a single Bank and this option is forced to

select. Deselecting this option will insert the switching bank command before

accessing the memory and allow all memory to be used, but the resulting Code

size will be larger.

 Clear RAM to zero on startup: Clear all the memory before starting the main function. The global initial

variable is not affected by this option. No matter whether this option is

selected, the global variable with initial values will complete the initial

value setting before entering the main function. Deselecting this option

can reduces the Code size, but user must initialize the global variable

without initial values themselves, because the memory content at boot

time is unknown.

 Generate ASM listing file: The listing file named *.lst will be produced after assembling, deselecting this

option can speed up the compiling speed.

 Generate listing file: The listing file named *.link.lst will be produced after linking. This file is the

disassembled result of the final .bin file. Deselecting this option can speed up the

compiling speed.

 Generate map file: The listing file named *.map will be produced after linking. This file contains address

assignment information. Deselecting this option can speed up the compiling speed.

 Optimization: Users can select Level 1~3 for optimization. The higher level, the better the optimized

program. Please note that this option might cause abnormal while working with the inline

assembly language.

 Reserved RAM size: Reserved for the memory size of the system operations. This option is used for

keeping the current state of the system, the parameters transfer of function call

and internal functions required for the system operation before entering the

interrupt service program. The virtual stack size for storing function parameter is

the reserved memory size minus 3. For example, the reserved RAM size is set to

16 bytes, where 13 bytes are the virtual stack of parameter passing. The user can

adjust the value as needed, the minimum value is 6 and maximum value is 16.

 Reserved RAM for interrupt: Reserved memory for used by the ISR, to store the current state of

variables in function before entering the interrupt. An interrupt may occur

while an array is calculated or function is called, and it may break the

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 16

calculation to registers currently in operation. Therefore, if the interrupt

causes wrong behavior, user would need to instruct the compiler to store

the variables that their operations are interrupted, and then set the

memory size that needs to be reserved for the compiler to backup

according to the variable size in use. The minimum is 0 and no function

call state is reserved. The maximum is “Reserved RAM size – 3”. The

larger setting value will cause the entry time of ISR to be longer because

more instructions must be used to backup the current state. The actual

numbers of instruction is slightly different if the backup memory is located

in a different bank. Please refer to the following table.

Reserved RAM Size Additional instructions before
entering the interrupt Note

0 byte 0

1 byte 4 word

2 byte 8 word or 4 word

3 byte 10 word or 6 word

4 byte 12 word or 8 word

5 byte 14 word or 10 word

……

11 byte 26 word or 22 word

12 byte 28 word or 24 word

13 byte 30 word or 26 word

 Include path: Set the search path for the C language keyword “include” reference header file. The

default path is the include folder of the project root directory and the NYC_NY8

installation directory. User can add a custom path.

3.5 Development Process

Use NYIDE to write the C language program and set the configuration file “.cb” required for the project.

NYIDE will automatically call NYC_NY8 to generate the assembly file “.s” when building, and then call the

NYASM to assemble the assembly code and the configuration file to produce the final .bin file. Finally, user

can use the Q-Writer to burn the .bin file to IC.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 17

3.6 Advanced Usage

This section introduces some advanced usages for NYC_NY8.

3.6.1 Specify the Address of Variables

In general, the variables of C language do not need to specify memory addresses, they will be

automatically relocated to a proper space via linker. However, there are requirements for specifying

variable address in some occasions. NYC_NY8 provides a special syntax for assigning address of the

specified variable, add “__at(addr)” before the variable type, and addr is the specified address.

Ex.

__at(0x23) unsigned char R0;

It is important to note that variables should not be declared in the SFR (Special Function Register)

section. If user wants to access the SFR, please use predefined variables defined in the Header file of

the selected IC. Because NYC_NY8 will link to the built-in static library during the project build process,

and the library uses the SFR declared in the header. If the user redefine SFR in the header, the project

build will fail. If you want to rename a SFR, please use the “#define” preprocessing instruction.

Ex.

#define BUTTON1 PORTBbits.PB0

...

if(BUTTON1 == 0)

{

 ...

}

When users have multiple .c files, they must also notice similar situations. Only one of the .c can

actually occupy memory, and the other .c must use the keyword “extern” to define the variable as

external.

Ex.

File: main.c

#include “my_var.h”

void main(void)

{

 R0 = 10; // use external variable

}

File: my_var.h

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 18

#ifndef MY_VAR_H

#define MY_VAR_H

extern __at(0x23) unsigned char R0;

#endif

File: my_var.c

#include “my_var.h”

__at(0x23) unsigned char R0; // instance of variable

User must notice and set the Reserve RAM Size form Options for the forced specified address, it must

keep enough share bank for system.

The figure is cut from page 18 of NY8A054D datasheet, it describes the R-Page address mapping . In

the red frame, Bank0 or Ban1 can access the same memory. The reserved RAM must allocated in the

red frame (0x40~0x7F).

3.6.2 Specify the Address of Function

In general, functions of C language do not need to specify memory addresses, they will be

automatically relocated to a proper space via linker. However, there are requirements for specifying

function address in some occasions. NYC_NY8 provides a special syntax for assigning address of the

specified function, add “__at(addr)” before the function return type, and addr is the specified address.

Example:

__at(0x110) void func(void)

{

 //......

}

Specifying function address usually is for correcting an error using second-time programming. Please

do not assign the address of function to 0x00, because 0x00 is occupied by NYC_NY8 start program.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 19

3.6.3 Mixed Usage of C and Assembly

In Development Process, we can see that NYC_NY8 converts the “.c” file to “.s” file, and then the

NYASM assembles the “.s” file with the “.cb” file into a “.bin” file. However, NYIDE allows more than

one .c file, and also more than one compiled assembly .s file. User can even write his own .s files

without using NYC_NY8 to generate the files, and these files can operate with .s files generated by

NYC_NY8. This chapter will introduce how to write .s file that cooperatively operates with .s file

generated by NYC_NY8.

Start with a simple example – Rolling code application. Rolling code with preset mode application must
keep ROM 0xE and 0xF blank, and rolling code will be written when programming afterward. In the
compilation time, 0xE and 0xF must be reserved. However, in the C language, it’s hard to fill in specified
values to the given addresses of IC, except that the __interrupt keyword enforces program to put at 0x1
or 0x8. The solution is to use the assembly to work with the C language. The following will demonstrate
how to use the assembly to keep blank at 0xE and 0xF addresses. When testing, the addresses 0xE
and 0xF will be filled in the test values, to read Rolling codes to verify with C language program.

Here are three files:
 rom.s fills NOP in 0xE and 0xF, fills 0x255 and 0x3AA test data if testing, and exports the symbol

“___rolling_code_addr” for C language use.
 rom.h defines the external symbol __rolling_code_addr.
 main.c contains main program reads rolling codes and verifies.

File rom.s (assembly file):

 list c=on

 extern ___rolling_code_addr

 org 0x0e

___rolling_code_addr:

 nop ; fill nop for rolling code

 nop

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 20

 end

In the rom.s file, the exported external symbol name is ___rolling_code_addr, please note that there are

three underlines. When the C code is compiled into assembly, an underline will be added to all symbols,

on the other hand, in order to differentiate the symbols from C language, we will add an extra underline.

In assembly, it’s easy to directly specify the location of the data using ORG command.

File rom.h (C header file)

#ifndef ROM_H_D3SEKR8B

#define ROM_H_D3SEKR8B

extern __code char __rolling_code_addr;

#endif /* end of include guard: ROM_H_D3SEKR8B */

In rom.h, there has only one line, an external symbol __rolling_code_addr definition. Here the __code

keyword explicitly defines this symbol is in ROM. There are only two prefix underlines for this symbol

name, since the C compiler will automatically add an underline when compiling into assembly.

File main.c (C source code)
#include <ny8a053a.h>

#include <ny8_romaccess.h>

#include “rom.h”

char rolling_code[3];

// Assume the Rolling Code is 961109d = 0xEAA55

#define C_RC_B0 0x55 //Rolling Code bit7 ~ bit0

#define C_RC_B1 0xAA //Rolling Code bit15 ~ bit8

#define C_RC_B2 0x0E //Rolling Code bit19 ~ bit16

void main(void)

{

 int r_tmp;

 IOSTB = 0; // Set all PORTB are output mode

 IOSTA = 0; // Set all PORTA are output mode

 PORTB = 0; // PORTB data buffer = 0 (output low)

 PORTA = 0; // PORTA data buffer = 0 (output low)

 // Read content from Program Memory(ROM) address 0x0E & 0x0F

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 21

 // Read content of ROM address “0x0E”

 r_tmp = read_14bit_rom(&__rolling_code_addr);

 rolling_code[0] = r_tmp & 0xff; // ROM data{0x00E} [7:0]

 rolling_code[1] = (r_tmp >> 8) & 0x03; // ROM data{0x00E} [9:8]

 // Read content of ROM address “0x0F”

 r_tmp = read_14bit_rom(&__rolling_code_addr + 1);

 rolling_code[1] |= (r_tmp & 0x3f) << 2; // ROM data{0x00F} [15:10]

 rolling_code[2] = (r_tmp >> 6) & 0x0f; // ROM data{0x00F} [19:16]

 if (rolling_code[0] == (char)C_RC_B0

 && rolling_code[1] == (char)C_RC_B1

 && rolling_code[2] == (char)C_RC_B2)

 PORTBbits.PB0 = 1; // Set PB0 output high (Rolling code is match)

 while(1)

 {

 CLRWDT();

 }

}

The main.c use the symbol __rolling_code_addr defined by rom.h to access ROM data, of course, user
can choose not to use this symbol, and directly specify the address 0xE. If the address of rolling code is
changed, it must also change the address of org instruction specified in rom.s, and the address in
main.c.

Then we look at the example of the main.c, the function read_14bit_rom read the ROM data is defined
in the library. ny8_romaccess.h contains its function prototype, the implementation is not really C but the
assembly. It is listed below to describe how to use the built-in function to call the function defined by
assembly from the C.

ny8_romaccess.h (system header file)

/** read 14bit data from ROM

 *

 * \param[in] ptr ROM address pointer

 * \return 14 bit data read from ROM

 */

int read_14bit_rom(const __code char *ptr);

read_14bit_rom.s (firmware implement)

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 22

 list c=on

#include “ny8_common.inc”

#include “macros.inc”

 ; export

 extern _read_14bit_rom

 ; import

 extern _TBHP

 extern _TBHD

 .segment “code”

_read_14bit_rom:

 sfun _TBHP

 movr STK00, W

 tablea

 movar STK00 ; LSB in STK00

 sfunr _TBHD ; MSB in WREG

 ret

 END

In the above two files, we can see the declaration of C and the implementation of assembly. The first
thing to note is the difference in symbolic name. In the C language called read_14bit_rom, and the
assembly is named _read_14bit_rom, which has one extra underline. The reason is as mentioned
earlier, after the C language compiled into an assembly, all symbols will be added the prefix underline.
This function has an input parameter that is the ROM address pointer, and a return value type “int
(16-bit)”. ROM address pointer is actually 16 bits, two 8-bit registers. The passing parameter uses ACC
first, then STK00 and STK12 public register.

In this example for the 16-bit pointer, the high 8-bit will be stored in ACC, the lower 8-bit will be stored in
the STK00. So the first step of the assembly is to move ptr [15: 8] stored in ACC to the TBHP register,
and move ptr [7: 0] stored in STK00 to ACC.

The storage of return value is also the same logic, high bits are in ACC, and lower bits are in STK00.
When the TableA completes reading the ROM data, the ROM [7: 0] is stored in ACC, then ACC is
moved to STK00, and move TBHD stored the ROM [13: 8] to ACC. Finally, ret command returns to this
function.

For main.c, it does not care whether the read_14bit_rom is written by C or the assembly. As long as the
input parameter and the format of output return value conform to specifications, they will perfectly
mutual cooperate.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 23

3.7 Suggestion

Some suggestions for developing C language projects are shown below.

 Try to use unsigned variables. In some operations which do not judge plus or minus, it will be faster.

 Do not use constants and variables interactively in the expression, intensively using the constants will
have an optimized code.
Ex. “1 + a + 2” is a bad coding style, as 1 and 2 cannot be calculated in the compilation time. It is
recommended to write “a+1+2”, 1+2 can be calculated in the compilation time, and it only needs to
calculate “a+3” in the execution time.

 Do not use float point. The float point operation consumes lot of memory, use integer operations instead
of floating point .

 Using if (INTFbits.T0IF) to replace if (INTFbits.T0IF == 1) can get a more compact program.

 Do not set some bit of the S-Page / F-Page register continuously and individually.
The S-Page / F-Page registers are read and written by special instructions, and continuously bit setting
will have to read and write these special registers many times, unlike R-Page register can use a single
BCR / BSR instruction to set the individual bits. When using the S-Page / F-Page register, it is
recommended to set the bits at a time.

 If all global variables will be given initial values before using, it can specify the NYC_NY8 not to clear
the value as 0 to reduce ROM usage. User can control the setting through Project Setting / Clear RAM
to zero from NYIDE setting window.

 If a lot of initial values of global variables are 0, using Clear RAM to zero will save program space.
(about 5 bytes or more)

 If the RAM usage is not huge, try using the small model to turn off the bank switch. This can produce a
more compact code.

 Do not split the program into too many .c files. This will affect the optimization and increase the amount
of RAM used. Because the compiler cannot assume that if the two functions will be executed at the
same time, it must assign the separate memory to each other.

 Try to assign the static attribute to the function, and mark that this function will not be called by
external .c, which can improve the optimization

 Use the NYASM version of the same released period. Because the files generated by NYC_NY8 will be
passed to NYASM for the next processing, if the version doesn’t match, there may be incompatible
situation. For example, NYC_NY8 may produce the instructions that are not supported by old version of
NYASM.

 If the pointers will only point to ROM or RAM, use the pointer attribute __data and __code to direct the
compiler when declaring.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 24

3.8 FAQ

Q1: Why is the interrupt missing when enabling multiple interrupt sources?

A:

Take enabling the PortB change interrupt and Timer1 interrupt simultaneously as an example, using the

clearing bit command to clear the T1IF is likely to erroneously clear the PBIF. It is recommended to use the

immediate value 0 to clear T1IF, the reason is described as follows.

When clearing T1IF (Timer1 interrupt flag), the IC will perform the following steps:

1.1 Read all bits of the “INTF” first.

1.2 Clear T1IF bit to 0 and other bits remain unchanged. The value will then be written to the “INTF” register.

If the PBIF bit is set due to a PortB change interrupt between step 1.1 and 1.2, which will then be overwritten

by step 1.2 and erroneously cleared to 0, causing the PortB change interrupt to be occasionally ignored.

Please refer to the following code to clear T1IF (Timer1 interrupt flag).

Recommended Instruction Code Not Recommended Instruction Code

“INTF = 0xF7;” or “INTFbits.T1IF = 0;” INTF &= 0xF7;

Generating assemble language Generating assemble language

MOVIA 0xf7

MOVAR _INTF
BCR _INTF, 3

Q2: The program of INTE2 register shows the error message: Use BSR instruction to clear interrupt

flag may cause other interrupt flags accidentally cleared if other interrupts are issued

immediately after.

A:

The 8-bit INTE2 register is consist of 2 parts, the high nibble INTE2[7:4] is the interrupt flag, and the low

nibble INTE2[3:0] is the setting for enabling the interrupt function. If user uses “&=” or “|=” operation on

INTE2 register, the C compiler will generate BCR or BSR instruction. These instructions are not an

instruction cycle within the IC. If the interrupt occurs and the interrupt flag is raised then the value is set, may

cause the interrupt flag to be cleared, thus the interrupt is missing. It’s recommended to access INTE2

register via the following 2 methods:

1. Write the complete 8-bit value directly while clearing the interrupt flag. Clear the target interrupt flag and

set the others as 1. The following example shows the INTE2 register is consist of bit4:T3IF and

bit0:T3IE only, and to clear the T3IF:

INTE2 = (unsigned char)((C_INF_TMR3^0xF0) | C_INE_TMR3);

It will generate a simplified assembly program.

MOVIA 0xE1

MOVAR _INTE2

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 25

2. If user is not sure of other bits while clearing an interrupt flag, user can set the bit individually. For

example, use INTE2bits to clean T3IF.

INTE2bits.T3IF = 0;

It will generate a more complex instruction to make sure all the bits except T3IF remains the original

status.

MOVR (_INTE2bits + 0),W

ANDIA 0xef

IORIA 0xe0

MOVAR (_INTE2bits + 0)

Q3: There are programs of accessing Array in both the main loop and the interrupt service routine, the

data is occasionally read and written to the wrong address?

A:

Because accessing Array uses the common system register, if it enters the interrupt service routine and

accessing Array is also in the interrupt service routine, the common system register status will be changed

and cause reading and writing address error.

It is recommended to use DISI() and ENI() for interrupt service routine control in this case to prevent the

accessing Array process from entering interrupt.

Q4: I noticed that the register definition files of various IC bodies in C:\Nyquest\NYC_NY8\include\

ny8a054a.h, but why it always links fail after changing the register name?

A:

The register name is not only defined in <icbody>.h but must also exist in the static library. The static library

is in the lib folder of the NYC_NY8 installation directory and the file name is <icbody>.a. The static library is

a binary file and cannot be modified by the user. Modifying the header file will cause the defined registers not

found in the library when linking.

It is recommended not to rename the built-in register in the system.

Q5: Set the variable value in the interrupt service routine and read in the general program process. The

reading result is abnormal?

A:

The variable that the interrupt service routine shares with the normal process, it is recommended to declare

with the keyword “volatile” to prevent the variable being optimized and cause program abnormally. The

following example illustrates that the shared variable count is optimized and cause program abnormally.

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 26

uint8_t count;

void isr(void) __interrupt(0) {

 if (INTFbits.T0IF) {

 INTFbits.T0IF = 0;

 count++;

 }

}

void delay(uint8_t delay_count) {

 count = 0;

 while (count < delay_count) {

 CLRWDT();

 }

}

In the above example, when the delay function is called, the count variable is initialized to 0 first. As timer

interrupt is enabled, the count variable will increase in each interrupt. Then, when the value of the count

variable reaches delay_count, the delay function will be suspended. However, in the actual execution, the

while loop in the delay never jumps out, causing an infinite loop. Since the compiler optimization regards that

the count variable does not perform any other operations after it is set to 0, count variable can be

substituted with the constant 0. Therefore, the judgement condition of while loop is optimized as “while (0 <

delay_count)”, and the condition is always true thus cause an infinite loop. The solution is to change the

declaration of the count variable and declare it as volatile to make the count variable not being optimized.

volatile uint8_t count;

Q6: Why the continuous equal ‘=’ assignment is different from the assemble language generated by

multiple independent assignments?

A:

It’s different for sure. To set the initial value, it’s recommended to set separately.

The continuous setting will start the execution from the end, and read the value again and set it to the next

target register. This will produce a more complicated assemble language program. For example, in the

following program, it is recommended to use the first line instead of the second line.

PA0 = 1; PB2 = 1;

PA0 = PB2 = 1;

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 27

Q7: When INTE2 = ~(0x01), the warning message shows overflow in implicit constant conversion

A:

To eliminate the warning message, user should add the type conversion to INTE2 = ~(0x01), for example

INTE2 = (unsigned char) ~(0x01).

Because the reverse operation of 0x1, user will get the int type 0xFFFE (16 bits). The 16 bits will be

specified to 8 bits of INTE2 and the high bits are automatically discarded and a warning message is

generated at the same time. A clear type conversion can eliminate this warning message.

Q8: The warning message shows conditional flow changed by optimizer

A:

This is usually a problem with the condition of the judgment. For example, the following program will

generate this warning, and after the warning is generated, the entire C program will not generate the asm

program.

if ((g1 & 0x00) == 0)

{

 /* nothing */

}

else

{

 g1++;

}

That is because the compiler sees the entire program as meaningless. (Any vairable AND 0 must be 0,

judging whether it is equal to 0 will always be true)

Q9: How to operate the combined multiple bytes

A:

Four 8-bit variables are combined into a 32-bit long data type. It is not recommended to use the left shift

operation because it will consume more ROM. There are two procedures listed below, the first one is not

recommended and the second one is recommended.

unsigned char a,b,c,d;

unsigned long e;

unsigned long result;

void func(void)

{

 e = ((unsigned long)a << 24) | ((unsigned long)b << 16) |

 (c << 8) | d;

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 28

 result += e;

}

It is recommended to use the 8-bit and 32-bit overlapping data structuresthat are defined by union, it could

omit left shift operation and OR operation. Please refer to the following program example.

typedef union long_byte_t {

 unsigned long l32;

 unsigned char l8[4];

} long_byte_t;

unsigned char a,b,c,d;

long_byte_t e;

unsigned long result;

void func (void)

{

 e.l8[0] = a; e.l8[1] = b; e.l8[2] = c; e.l8[3] = d;

 result += e.l32;

}

 NYC_NY8 User Manual

Ver. 2.0 2023/08/23 29

4 Revision History

Version Date Description Modified Page

1.0 2017/08/14 Formal release. -

1.1 2017/10/27 Add FAQ. 18

1.2 2018/05/30

1. Add sbit syntax.

2. Add new description to Option.

3. Add new FAQ.

8

13

21

1.3 2019/05/24
1. Add the description of EEPROM.

2. Add the description of Forced the Specified Function Address.

11

16

1.4 2020/03/03 Add FAQ. 22

1.5 2020/08/18

1. Add the descriptions of system specify memory.

2. Add item to Suggestion.

3. Add item to F&Q.

14

19

20

1.6 2022/02/14
1. Add the description of “multi_16b” Function.

2. Rename Bank Select Optimize as Optimization.

12

13

1.7 2022/09/13
1. Add Win11 to support system requirements.

2. Add item to F&Q.

3

25

1.8 2022/11/28
1. Remove the description of Reserved RAM Size.

2. Add item to F&Q.

-

25

1.9 2023/02/15

1. Add the Inline Assembly Block.

2. Modify the decriptions of Specify the Address of Variables

3. Add notes to Suggestion.

9

15

22

2.0 2023/08/23 Add the desctriptions of Built-in function clear_ram. 14

	1 Introduction
	1.1 Outline of the manual
	1.2 System Requirements
	1.3 The Installation of NYC_NY8

	2 Use NYC_NY8
	2.1 Use NYC_NY8 through NYIDE
	2.1.1 Create New Project
	2.1.2 Build

	3 Syntax and Usage
	3.1 Standard C Syntax
	3.1.1 Comment
	3.1.2 Data Type

	3.2 Extended Syntax
	3.2.1 Reserved Word
	3.2.2 Interrupt
	3.2.3 Register Address Definition
	3.2.4 Register Bits Definition
	3.2.5 Inline Assembly
	3.2.6 Inline Assembly Block
	3.2.7 Pointer Property

	3.3 System Header File
	3.3.1 Special Command Macro
	3.3.2 System Register Definition
	3.3.3 ROM Data Access
	3.3.4 EEPROM Data Access
	3.3.5 Built-in Function Multi-16b
	3.3.6 Built-in Function clear_ram

	3.4 Option
	3.5 Development Process
	3.6 Advanced Usage
	3.6.1 Specify the Address of Variables
	3.6.2 Specify the Address of Function
	3.6.3 Mixed Usage of C and Assembly

	3.7 Suggestion
	3.8 FAQ

	4 Revision History

